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SUMMARY

The origination of detached separation is studied on the basis of a numerical solution of the full Navier±Stokes
equations. Fluxes of vorticity with different signs generated with twice the frequency of cylinder oscillation move
from the cylinder to the outer surface of a detached liquid layer in the form of concentric rings. Near the critical
layer between the attached layer and the main ¯ow these rings are torn and crimped to the regions of separated
vortices of the corresponding sign. The form of detached separated vortices is similar to that of vortices
originating from a stationary circular cylinder in a uniform ¯ow. Transition of the ¯ow to a non-symmetric form
with Karman vortex street generation at a Reynolds number (based on the radius) greater than 17 is revealed. This
critical Reynolds number is smaller than that for a stationary circular cylinder in a viscous stream (where Re� 20
has been determined to be a critical value) and corresponds to the Reynolds number extrapolated from the critical
value for the stationary cylinder by increasing the cylinder radius by the attached layer thickness. The vorticity
¯ux from the cylinder surface immediately into the separation region decreases as the frequency of cylinder
oscillation increases. Violation of the ¯ow potentiality in the detached separation region is the main cause of the
vorticity generation on the outer surface of the attached liquid layer. # 1997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerous types of ¯ow separation are known. The basic feature that we are accustomed to regarding

as a necessary part of ¯ow separation is the presence of a solid surface where the separation has its

origin. The phenomenon of detached separation differs from the conventional idea. This novel type of

¯ow separation has been revealed in a natural experiment with a slotted wing and also obtained in a

computational simulation of the viscous ¯ow around a circular cylinder performing rotational

oscillations in a uniform stream.1±3 In both cases detached separation can be characterized, in the ®rst

place, by properties of the main ¯ow when, depending on the body geometry and ¯ow parameters, the

global pressure ®eld causes ¯ow separation, and in the second place by the existence of a liquid layer

or jet which separates the recirculation region from the body surface. In the case of a circular cylinder

performing rotational oscillations in a uniform stream, different types of detached separation were
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obtained: symmetrical detached separation at low Reynolds numbers2,3 and development of unsteady

detached separation with generation of a vortex street similar to the Karman vortex street.4 If the

Reynolds number Re (based on the radius of the cylinder) exceeds 200, the attached liquid layer

separating the recirculation region becomes thinner and alternation of conventional ¯ow separation

with detached ¯ow separation begins at certain values of the cylinder oscillation frequency and

amplitude. At the same Reynolds number the outer part of the attached layer can destruct to generate

small-scale vortices which convect with the ¯ow into the detached separation region and add to large-

scale vortices typical of the Karman vortex street.4,5 These detached separation forms are essential

physical phenomena requiring a more detailed description than References 1±5 provide.

Interesting detached separation detection by computer simulations is due to Taneda's experiment,6

where the viscous ¯ow around a rotationally oscillating circular cylinder was studied. In this natural

experiment for ReD � 35 (Reynolds number based on the cylinder diameter) the method of

electrochemical emission of a tracing substance from the cylinder surface into the ¯ow was used and

an intriguing ¯ow pattern (Figure 1) was obtained.6 The tracing particles enter the boundary layer

generated around the oscillating cylinder, move in the layer, are displaced to the rear critical point of

the ¯ow around the cylinder and form a thin layer of the tracing substance that moves along the ¯ow

symmetry axis. It should be emphasized that even at t � 12D=U1 (where D is the cylinder diameter

and U1 is the velocity of the undisturbed ¯ow) this layer remains as a straight line, which

demonstrates that the ¯ow behind the cylinder is symmetrical. Consequently, it has been conjectured

in Reference 6 that the cylinder oscillations stabilize the ¯ow and prevent separation on the cylinder

surface. A different assumption has since been proposed in Reference 2: separation near the cylinder

does exist and develops from the outer boundary of a liquid layer attached to the cylinder, which is

clearly seen in Figure 1. This assumption is based on the idea that the development of a boundary

layer changes insigni®cantly the geometry of the effective body (the cylinder plus the attached

layer).7 As a consequence, the unfavourable pressure gradient of the main ¯ow must initiate ¯ow

separation on the outer surface of the attached liquid layer. In view of such physical processes the

Figure 1. Streamlines and streaklines around a circular cylinder performing a rotatory oscillation about its axis in a uniform
¯ow: D� 1 cm, U� 0�33 cm s71, ReD� 35, N� 2 Hz, ND=U� 6, A�p=4, x�Ut, x=d� (a) 0, (b) 1�5, (c) 3�4, (d) 12 (from

Reference 6)
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¯ow topology in Figure 1 may be considered as the ®rst indication of the existence of an attached

layer. However, some novel physical phenomena must be discovered and ideas proposed in order to

understand whether it is possible to prevent ¯ow separation from the effective body.

Attempts are being made to develop theoretical models describing the phenomenon presented in

Figure 1. In the framework of the boundary layer approach it is shown by Ruban and Kravtsova8 that

the rotational oscillation promote separation on the cylinder. Using the generalized Lagrangian mean

theory, Wu et al.9 have shown that the cylinder oscillations always reduce the vorticity ¯ux from the

cylinder in comparison with the corresponding case of steady ¯ow. Moreover, when the period of

cylinder oscillation is much less than that of ¯ow separation, a critical amplitude of oscillation leads

to zero mean ¯ux of vorticity. The minimum value of the Strouhal number (hereafter referred to as

reduced frequency K) based on the cylinder radius and the oscillation period for prevention of ¯ow

separation is 10. As opposed to this theoretical study, computational investigation2 indicates a

reduced frequency of three. The results of the computational experiment detailed in Reference 2 and

in Section 3 of the present paper allow us to see the topology of equal-vorticity lines (Figure 2(a)) and

streamlines (Figure 2(b)), which clearly show that the viscous ¯ow computed for K � 3;Re � 10 and

an effective amplitude A � p=4 includes an attached layer and a recirculation region. Of no less

importance is the question of how the vorticity appears in the inner region of the ¯ow, i.e. what is the

physical process that leads to vorticity generation on the liquid surfaceÐthe outer boundary of the

attached liquid layer? Discussion of this problem and assessment of the assumptions about the

physics of the ¯ow demand additional information to that in Reference 2 and Figure 2. The study of

new, vast computational simulation results and the analysis of vorticity generation on the liquid

boundary are the goals of the present investigation.

The paper hereafter consists of ®ve sections. The problem statement for the viscous ¯ow around a

circular cylinder performing rotational oscillations in a uniform ¯ow is presented in Section 2. The

problem is formulated in terms of streamfunction and vorticity. Section 3 is a concise description of a

®nite difference computational algorithm for solving the above computational ¯uid dynamics

problem. In Section 4 we consider the process of origination of detached separation and the

conditions of development of non-symmetric ¯ow. Simultaneously, theoretical premises for vorticity

generation on the liquid boundary that separates the recirculation region and the attached liquid layer

are analysed. The ¯ow at low Reynolds numbers �Re < 40� is discussed in Section 5. The dependence

of the ¯ow type on the frequency of oscillation is studied. The attached liquid layer around the

cylinder is determined to be a two-layer structure by studying trajectories of liquid particles in the

¯ow. Such a structure is explained through physical effects similar to those underlying the design of a

centrifugal pump. Finally, in section 6 we analyse peculiarities of the solution that lead to the

formulation of new problems in the study of detached separation from bodies in viscous ¯ows.

2. Problem statement

The basis of the study is the Navier±Stokes equations written in terms of the streamfunction c and

vorticity O, de®ned through the velocity components u and v, namely the vorticity transport equation

@O
@t
� u

@O
@x
� v

@O
@y
� 1

Re
DO; �1�

where D is the Laplace operator, Re � U1R=n is the Reynolds number and n is the kinematic

viscosity coef®cient, and the Poisson equation for the streamfunction,
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� @
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@y2
� O: �2�
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The variables and parameters of the problem are non-dimensional with respect to R and U1.

For the problem of the viscous ¯ow around a circular cylinder it is convenient to use polar co-

ordinates �r;f�, where r is the radius and f is the polar angle. The computational grid should be

additionally compressed towards the cylinder surface by the transformation

r � ex; Z � f; H2 � e2x; x � d tan�py=2�; �3�
where H2 � �@x=@x�2 � �@y=@x�2 is the Jacobian of transformation from Cartesian co-ordinates �x; y�
to curvilinear orthogonal co-ordinates �x; Z�.

Over the cylinder surface s, no-slip boundary conditions are imposed:

vr � 0; vf � W �t�; �4�
where vr � ÿ�1=r�@c=@f is the radial velocity component, vf � @c=@r is the circumferential

velocity component and W is the cylinder rotation angular speed. The conditions (4) are reformulated

in terms of the streamfunction as

c � 0;
@c
@r
� W �t�: �5�

Figure 2. (a) Equal-vorticity lines and (b) streamlines around a circular cylinder for Re� 10, K� 3, A� p=4 at t� 20
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The ¯ow is assumed to be uniform at in®nity (the conventional boundary condition). However, the

computations in this research cover a ®nite region which is de®ned by the cylinder surface s and the

outer boundary s1 (the circumference of radius R1). On the outer boundary the `soft' boundary

condition for vorticity is used, i.e.

@O
@x
� 0; �6�

and the tangential velocity is prescribed by

Hÿ1 @c
@x
� U sin Z: �7�

The boundary condition (6) is a standard one and has not raised doubts yet in complex cases of

large symmetrical lengthwise separation behind stationary circular cylinders.10 Equation (7) is a

conventional condition for the study of the initial phase of the viscous ¯ow around a cylinder11 and is

preferable to prescribing a streamfunction on s1
12 when the long-time ¯ow development is studied.

Additional terms such as a sink10 are included in the study of the steady ¯ow and ®nally a completely

`soft' boundary condition is derived in the study of the unsteady ¯ow past an elliptic cylinder or an

aerofoil.13,14 An in¯uence of the boundary condition (7) on the frequency of vortex shedding from the

cylinder is possible and may be essential; the same is true for the drag and lift of the cylinder.

However, for the study of the initial phase of detached separation this boundary condition may be

used with con®dence, and for the study of the general character of unsteady detached separation we

can again use the condition (7) with the intention of elaborating the `open-ended' condition with

additional terms for more complex investigations.15

Along with the boundary conditions we should discuss the following problem: a solution to the

modi®ed N±S equations (1) and (2) written in variables c and O is not always a solution to the initial

set of equations in variables u; v and p; this was clearly shown by Zakharenkov.16

This distinction is usually established easily when the pressure ®eld p is calculated from the N±S

equations in the Gromeka±Lamb form
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where the streamfunction c and vorticity O are known from equations (1) and (2). Therefore the

requirement that the solution to the derived system be equivalent to the initial N±S system solution is

formulated as a requirement for the pressure p not to depend on the path of integration of equations

(8).16 In particular, the pressure distribution on the body surface is analysed in References 3 and 17.

For a complex problem such as the viscous ¯ow around a circular cylinder performing rotational

oscillations, the requirement for the pressure ®eld not to depend on the path of integration of

equations (8) is very dif®cult. In fact, the steady viscous ¯ow around a circular cylinder rotating at a

constant angular velocity in a viscous ¯uid which is at rest at in®nity is described in terms of the

velocity potential of a single vortex. However, the unsteady viscous ¯ow around a cylinder rotating in

an initially resting liquid is described by a complex relation including Bessel functions.18 To strictly

solve this problem in the frame of the present problem statement, one should specify a time-

dependent low tangential velocity over s1
18. A very small variation in vf�R1; Z� can produce a large

discrepancy in the pressure on the cylinder surface.
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When a circular cylinder is rotated at a constant angular velocity in a uniform ¯ow, a lateral

Magnus force is generated. In a plane ¯ow with a uniform velocity directed along the x-axis, this

force is Fy directed along the y-axis. At high time-dependent angular velocities this force is large and

changes its sign depending on the angular speed. Such behaviour of the integral characteristic is

associated with a complex time-dependent pressure ®eld near the cylinder; it is, however, obvious

that this pressure ®eld is not associated with notable variations in the velocity vf at the outer

boundary s1 of the calculation domain. Nevertheless, it is possible to construct an interval

assessment of the solution quality by proceeding in the following way. In the ®rst case we specify the

correction function vf on s1,16 while in the other case we use the surface vorticity correction that

provides the correct pressure calculations.17 This interval estimation was developed by Zakharenkov2

and good coincidence of the ¯ow topology (i.e. patterns of both equal-vorticity lines and streamlines)

has been obtained, a slight difference appearing only in a very small region near the cylinder in

higher derivatives of the streamfunction and vorticity. It is obvious that, by analogy with modelling

the curvilinear tangential discontinuity in an aerofoil wake (where the centrifugal force is balanced by

the cross-gradient of pressure and the solution contains distributed sinks19), the same correcting ®eld

of distributed sinks may be used in our problem for modelling the large cross-force Fy appearing in

the thin distorted boundary layer. Nevertheless, in the initial phase of investigation it is useful to

employ the approach derived by Zakharenkov2 and ®rst estimate the qualitative properties of the

phenomenon under consideration. Note that for the ¯ow in an aerofoil wake the above-mentioned

corrections are like the second-order approach and this may be expected to appear in our problem.

Returning to the formulation of the problem of the viscous ¯ow around a circular cylinder

performing rotational oscillations, let us specify the angular speed by the law2

W � 1
2

Aw sin�w�t ÿ t0��; w � 2pK; K � R=U1T ; �9�

where K is the reduced frequency, A is the amplitude of oscillation and T is the period of oscillation.

For example, the value K� 3 corresponds to a ¯ow in which three full oscillations of the cylinder are

accomplished during the time interval when free particles in the far ®eld travel a distance equal to the

cylinder radius.

The system is initially at rest. In going to the velocity U1, the viscous ¯ow accelerates from rest

either instantaneously or by following a parabolic law11,20 for time T0 � 0�2:

dU

dt
�
ÿ0;
ÿ4t=T 2

0 ;
4�t ÿ T0�=T2

0 ;
0;

t < 0;
04 t < T0=2;
T0=2 < t < T0;
T0 < t:

8>><>>:
Within this problem statement the parameter of Taneda's experiment are Reynolds number

Re � 17�5 �ReD � 35�, amplitude A � p=4 and reduced frequency K � 3. Finally, the study by Wu et

al.9 suggests that ¯ow separation will be eliminated if K � 10.

3. NUMERICAL SOLUTION METHOD

The above problem is very complex for computational simulation; this is evidenced by the

availability of only a few examples of solutions in the literature. Nevertheless, the results of

numerical simulations will be more persuasive if a reliable conventional computational algorithm is

used. Such is the algorithm developed in References 2 and 20. The basic steps of the computational

procedure are as follows.
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Equations (1) and (2) of the N±S system are decoupled and solved independently of one another.

The Poisson equation (2) is solved by the direct method (i) after expansion into a Fourier series (a

trigonometrical polynomial) in the cyclic co-ordinate Z and (ii) using the fast Fourier transform.21

This method provides the exact solution of the system of algebraic equations for ®nding the

streamfunction on a grid. This system is composed of three-point linear equations written for Fourier

components of the grid streamfunction:

Aĉjÿ1 ÿ 2Bĉj � Cĉj�1 � Fj; j � 1; 2; . . . ;Nx: �10�
Here the coef®cients depend on r.

The vorticity transport equation (1) is solved by the alternating direction method:22,23
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where n is the time step index, t is the time step length and An�1=2 � �An � An�1�=2.

The second derivatives in (2) and (11) are approximated by central differences. The velocities vx
and vZ in (11) are calculated on the basis of the streamfunction, also by using central differences. The

non-linear terms in (11) are approximated by three-point upwind differences,24 e.g.
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The peculiarity of the solution of the decoupled equations (1) and (2) is the necessity to

reformulate the no-slip boundary condition (4) in a form which contains a suitable boundary

condition for the vorticity transport equation.23 The theory of the computational realization of the no-

slip condition as a boundary condition for the vorticity and the Dirichlet boundary condition for the

streamfunction is derived in References 20, 25 and 26. The investigation by Tarunin25 shows the

existence of an optimal approximation formula for the vorticity on a solid boundary. The uniformity

of all approaches derived earlier for the determination of the vorticity on a solid boundary has been

shown by Zakharenkov.26 Thereafter the theory has been developed for other forms of the N±S

equations16 (in velocity±vorticity variables and velocity±pressure variables, when the Poisson

equation is solved for pressure). The universal two-parameter approximation formula for the vorticity

on the boundary s takes the form

@c
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����
s

� Lcÿ E
@2c
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����
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� hy�2hy ÿ a�
3!
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Kj cj; E � �6aÿ b�=22;

K0 � �ÿ198hy � 50aÿ 12b�=132; K1 � �264hy ÿ 114a� 30b�=132;

K2 � �ÿ66hy � 78aÿ 24b�=132; K3 � �ÿ14a� 6b�=132;
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where a and b are parameters.
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